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Amplitude thresholds for transition of localized disturbances, their breakdown
to turbulence and the development of turbulent spots in the asymptotic suction
boundary layer are studied using direct numerical simulations. A parametric study
of the horizontal scales of the initial disturbance is performed and the disturbances
that lead to the highest growth under the conditions investigated are used in the
simulations. The Reynolds-number dependence of the threshold amplitude of a
localized disturbance is investigated for 500 � Re � 1200, based on the free-stream
velocity and the displacement thickness. It is found that the threshold amplitude
scales as Re−1.5 for the considered Reynolds numbers. For Re � 367, the localized
disturbance does not lead to a turbulent spot and this provides an estimate of the
critical Reynolds number for the onset of turbulence. When the localized disturbance
breaks down to a turbulent spot, it happens through the development of hairpin and
spiral vortices. The shape and spreading rate of the turbulent spot are determined for
Re = 500, 800 and 1200. Flow visualizations reveal that the turbulent spot takes a
bullet-shaped form that becomes more distinct for higher Reynolds numbers. Long
streaks extend in front of the spot and in its wake a calm region exists. The spreading
rate of the turbulent spot is found to increase with increasing Reynolds number.

1. Introduction
In natural transition, the breakdown to turbulence typically starts in isolated regions

initiated by disturbances present in the laminar flow. These turbulent spots grow in
size as they propagate downstream and merge to form a fully developed turbulent
flow. Turbulent spots were first observed by Emmons (1951) in shallow water flowing
down an inclined plate. Since then, turbulent spots and their development have been
investigated extensively in channel flows and boundary layers.

The early experimental work of turbulent spots in boundary layers has been
reviewed by Riley & Gad-el-Hak (1985). Flow visualizations of Elder (1960) and
Cantwell, Coles & Dimotakis (1978) reveal that the turbulent spot in the boundary
layer over a flat plate takes the form of an arrowhead with its tip pointing downstream.
The leading edge develops an overhang over the laminar boundary layer. Behind the
spot, a non-turbulent region with streaks can be seen. The laminar flow in the wake of
the turbulent spot turns out to be more stable and has been termed a calmed region.
The leading and trailing edges propagate at about 90 % and 50 % of the free-stream
velocity, respectively, while the lateral spreading is at a half-width angle of about
10◦ regardless of Reynolds number (Wygnanski, Sokolov & Friedman 1976). As the
spot propagates downstream, its height increases at a rate similar to the growth of a
turbulent boundary layer. Wygnanski, Haritonidis & Kaplan (1979) observed oblique
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wave packets swept at an angle of about 40◦ near the wingtips of the spot. Whether
these waves packets play an important role in the lateral spreading or merely act as
passive attendants to the spot has been debated.

The evolution of turbulent spots in boundary layers with pressure gradients has
also been investigated. Katz, Seifert & Wygnanski (1990) observed that the rate of
growth of the spot is significantly inhibited by a favourable pressure gradient. The
familiar arrowhead shape of the spot gave way to a rounded triangular shape with
the trailing interface being straight and perpendicular to the free-stream direction.
They did not observe wave packets and attributed this to the stability of the laminar
flow. With an adverse pressure gradient, the trend is the opposite, as observed by
Seifert & Wygnanski (1995). The rate of growth of turbulent spots, especially the
lateral growth, is enhanced by an adverse pressure gradient as well as the interaction
of the spot with the wave packet trailing it.

There are very few simulations of turbulent spots in boundary layers. The first
direct numerical simulation (DNS) of a spot that was taken far enough in time to
make comparisons with experiments was performed by Henningson, Spalart & Kim
(1987) for a temporally growing Blasius boundary layer. Singer (1996) looked more
into details of the substructures within a young turbulent spot by means of DNS of
a spatially growing Blasius boundary layer. In these simulations, the spot assumed
the well-known shape of an arrowhead with its characteristic overhang of the leading
edge, but wave packets were not observed.

In plane Poiseuille flow, the spot develops the shape of a reverse arrowhead as can
be seen in flow visualizations by Carlson, Widnall & Peeters (1982) and Alavyoon,
Henningson & Alfredsson (1986). Oblique waves can be seen at the wingtips and
streaks extend into the interior of the spot throughout its length. Henningson &
Alfredsson (1987) further investigated oblique waves. Contrary to spots in the flat-
plate boundary layer, the spreading rates in the streamwise and spanwise directions are
found to depend on the Reynolds number (Alavyoon et al. 1986). The only simulation
of a turbulent spot in plane Poiseuille flow was performed by Henningson & Kim
(1991). Their obtained spot had a very similar shape to that observed in laboratory
flows and oblique waves existed at the wingtips.

For turbulent spots in plane Couette flow, the simulations of Lundbladh &
Johansson (1991) preceded the experiments of Tillmark & Alfredsson (1992) and
Dauchot & Daviaud (1995). In both the simulations and the experiments, the spot
assumed an elliptical shape that evolved towards a circular shape as it propagated
downstream. Moreover, the lateral spreading rate increased with increasing Reynolds
number for low Reynolds numbers, but levelled off to a constant rate at high Reynolds
numbers corresponding to a half-width angle of 13◦ in the simulations and 11◦ in
the experiments of Tillmark & Alfredsson (1992). In the experiments, waves with the
wave crests aligned in the streamwise direction were observed at the spanwise edges
of the spots. These waves were not observed in the simulations.

There have been many investigations of turbulent spots in wall-bounded flows,
mostly experimental studies, but also simulations (Mathew & Das 2000). However,
nothing has been reported on turbulent spots in the asymptotic suction boundary
layer (ASBL). Boundary layers subjected to suction at the wall are interesting flow
cases with applications in the area of control (Joslin 1998; Balakumar & Hall 1999;
Pralits, Hanifi & Henningson 2002; Zuccher, Luchini & Bottaro 2004). The ASBL is
stable to infinitesimal disturbances below a critical Reynolds number of 54 370, based
on the free-stream velocity and the displacement thickness (Hocking 1975). However, a
transient disturbance growth may occur for much lower Reynolds numbers (Fransson
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Figure 1. The asymptotic suction boundary layer and a localized disturbance with dark grey
indicating upward moving fluid and light grey fluid moving downward.

& Alfredsson 2003; Fransson & Corbett 2003; Yoshioka, Fransson & Alfredsson
2004; Byström, Levin & Henningson 2007). Levin, Davidsson & Henningson (2005)
reported breakdown to turbulence in the ASBL at a Reynolds number of 500. Mariani,
Spalart & Kollmann (1993) reported sustained turbulence in the suction turbulent
boundary layer for a corresponding Reynolds number as low as 278. At the time of
writing this paper, experiments of turbulent spots in the ASBL are being performed in
the MTL wind-tunnel at KTH Mechanics in Stockholm (J. H. M. Fransson, personal
communication).

In the present study, threshold amplitudes of localized disturbances, their
breakdown and the development of turbulent spots in the ASBL are carried out
by means of DNS. In § 2, the numerical method is presented as well as a parametric
study of the localized disturbance. In § 3, the results are organized as follows:
amplitude thresholds are presented in § 3.1, vortical structures within a transitional
localized disturbance are visualized in § 3.2 and the development of turbulent spots is
investigated in § 3.3. Finally, conclusions are drawn in § 4.

2. Numerical details
2.1. Base flow and scaling

Consider a boundary layer over an infinite wall with permeable properties and with
suction applied under it (figure 1). The coordinates in the streamwise, wall-normal and
spanwise directions are denoted x, y and z, respectively. The corresponding velocity
components are U = (U, V, W ). Lengths are scaled by the displacement thickness
δ1 and velocities are scaled by the free-stream velocity U∞. The units of time t are
δ1/U∞. The Reynolds number is defined as Re = U∞δ1/ν, where ν is the kinematic
viscosity of the fluid. When uniform wall-normal suction, with velocity −V0, is applied
at the wall, the displacement thickness, shown as the dashed lines in figure 1, becomes
constant over the wall. The asymptotic suction profile can be experimentally obtained
after some evolution region (Fransson & Alfredsson 2003). The ASBL is an analytical
solution to the Navier–Stokes equations. It was first derived by Griffith & Meredith
(1936) and can be written as

U0 = (1 − exp(−y), −V0, 0). (2.1)
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The analytical solution allows the displacement thickness to be calculated exactly,
δ1 = ν/V ∗

0 and the Reynolds number to be expressed as the velocity ratio, Re =
U∞/V ∗

0 , where −V ∗
0 is the dimensional suction velocity.

2.2. DNS techniques

The numerical code (see Lundbladh et al. 1999) uses spectral methods to solve
the three-dimensional time-dependent incompressible Navier–Stokes equations. The
discretization in the streamwise and spanwise directions makes use of Fourier series
expansions, which enforce periodic solutions. The discretization in the wall-normal
direction is represented with Chebyshev polynomial series. A pseudospectral treatment
of the nonlinear terms is used. The time advancement is a second-order Crank–
Nicolson method for the linear terms and a four-step low-storage third-order Runge–
Kutta method for the nonlinear terms. Aliasing errors arising from the evaluation
of the pseudospectrally convective terms are removed by dealiasing by padding and
truncation using the 3/2-rule when the fast Fourier transforms are calculated in
the wall-parallel planes. In the wall-normal direction, it is found that increasing the
resolution is more efficient than the use of dealiasing. The code can be used for
both temporal and spatial simulations. In the latter case, a fringe region (Nordström,
Nordin & Henningson 1999) is added to the downstream end of the physical domain,
in which the outgoing flow is forced to its initial state. However, when studying
parallel flows, such as the ASBL with a localized disturbance, the advantage of
omitting the fringe region can be used.

The numerical code does not allow for uniform flow through the lower and upper
boundaries. However, the wall-normal suction in the ASBL can be moved from the
boundary conditions to the governing equations (see Levin et al. 2005). Hence, instead
of solving the Navier–Stokes equations for V with the boundary condition V = −V0,
the same solution can be obtained by solving for V − V0 with the boundary condition
V = 0.

At the wall, no-slip boundary conditions are specified and at the upper edge of the
computational box, a generalized boundary condition is applied in Fourier space with
different coefficients for each wavenumber. The condition represents a potential-flow
solution decaying away from the upper edge of the computational box and decreases
the required box height by damping the higher frequencies rather than forcing the
disturbance velocities to a rapid decay. In the horizontal directions, periodic boundary
conditions are used.

2.3. Disturbance generation

The present numerical implementation provides several possibilities for disturbance
generation. Disturbances can be included in the flow by a body force, by blowing and
suction at the wall through non-homogeneous boundary conditions and by adding
them in the initial velocity field. In order to produce a turbulent spot, a localized
disturbance is superposed to the ASBL in the initial velocity field. This type of
disturbance is centred around a pair of oblique waves, in the streamwise-spanwise
wavenumber plane, consisting of two counter-rotating vortex pairs, (figure 1). This
type of initial disturbance has been used in earlier studies of transient growth and
transition in channel flows (Henningson, Lundbladh & Johansson 1993) and boundary
layers (Breuer & Haritonidis 1990; Breuer & Landahl 1990; Bech, Henningson &
Henkes 1998). In terms of a streamfunction, it is defined by

ψ = Ax̄ȳ3z̄ exp (−x̄2 − ȳ2 − z̄2), (2.2)
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Re A Lx × Ly × Lz Nx × Ny × Nz End time

500 0.08 100 × 15 × 40 200 × 101 × 160 200
800 0.05 100 × 15 × 40 320 × 161 × 256 200

1200 0.03 100 × 15 × 40 480 × 241 × 384 200

Table 1. Flow and box parameters for resolution checks.

where x̄ = x/lx , ȳ = y/ly and z̄ = z/lz. The velocity components are given by
(u, v, w) = (0, −ψz, ψy) and normalized so that the amplitude A is given by the
maximum absolute value of the wall-normal disturbance velocity. The energy of the
disturbance is defined by

E = 1
2

∫
(u2 + v2 + w2) dx dy dz. (2.3)

When studying the development of turbulent spots, apart from the localized
disturbance, random noise is added to the initial velocity field in order to break
up symmetries. The noise is in the form of Stokes modes, i.e. eigenmodes of the flow
operator without the convective term. These modes fulfil the equation of continuity
and the boundary condition of vanishing velocity at the wall. The introduced noise
level is specified with its energy density, that is, the total energy of the noise divided
by the volume of the box.

2.4. Numerical parameters

Amplitude thresholds for transition and the development of turbulent spots are
investigated for three Reynolds numbers, Re = 500, 800 and 1200. For each Reynolds
number, the resolution is carefully checked for a small test case. Dealiasing is activated
in the streamwise and spanwise directions. The amplitude of the localized disturbance,
which has the scales lx = 10, ly = 1.0 and lz = 5.5, is about twice as large as the
threshold value for the corresponding Reynolds number, resulting in breakdown
to a turbulent spot well before the termination time of 200. When evaluating the
resolution convergence, the disturbance energy, extreme values of velocity and vorticity
components and visual examinations of flow structures are taken into account. It was
decided to use the resolutions given in table 1 after comparsion to both coarser and
finer grids not given here. The time step is set adaptively to keep the CFL number close
to a fixed number. Hence, the time resolution is changed with the spatial resolution and
therefore included in the resolution checks. As can be seen in table 1, the resolution in
each direction is linearly scaled with the Reynolds number. Moreover, when the box
size is increased, the resolution is increased correspondingly to ensure the same number
of modes per length unit in each direction. To summarize the above, the number of
modes is at least given by (Nx × Ny × Nz) = (LxRe/250 × LyRe/75 + 1 × LzRe/125),
where Lx , Ly and Lz denote the length, height and width of the box, respectively.
When searching for the critical Reynolds number, the resolution for Re = 500 is used.

Apart from the resolution checks, the size of the box is examined for a few cases. It
is found that the required box height decreases with increased Reynolds number. One
reason for this could be that lower initial amplitudes of the wall-normal disturbance
velocity are used for higher Reynolds numbers. The interaction distance between
mirror spots in the spanwise direction is short, resulting in low sensitivity of the
box width. On the other hand, the interaction distance in the streamwise direction is
longer. The interaction takes the form of bonding between streaks at the front and
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trail of mirror spots. For each simulation, the box size is set to fit one spot and avoid
interactions between mirror spots during the time simulated.

2.5. Study of horizontal scales of a localized disturbance

The influence of the streamwise and spanwise length scales of the localized disturbance
is studied. The wall-normal scale is ly = 1 while the horizontal scales lx and lz are
varied. The Reynolds number is Re = 500 and the size of the computational box
used for this parametric study is (Lx ×Ly ×Lz) = (100×15×50). In a first attempt to
study how the horizontal scales of the initial disturbance affect the development of a
turbulent spot, the amplitude of the initial disturbance is kept constant at A = 0.07.
As a result, the energy of the initial disturbance increases as the horizontal scales
increase. This gives rise to stronger breakdown and larger turbulent spots. When
the scales are increased further, the localized disturbance breaks down to several
turbulent spots and this is not desired in this study. The next approach is to keep
the initial energy of the disturbance constant, while varying the horizontal scales. The
streamwise scale is varied from 7 to 11 with steps of 1 and the spanwise scale is varied
form 4 to 7 with steps of 0.5. The energy level is set to E0 = 6.2, the value that the
disturbance with horizontal scales lx = lz = 7 assumes with the amplitude A = 0.07.
A clear optimum can be found and among the simulated cases, lx = 10 and lz = 5.5
give rise to the maximum disturbance energy at time 200. The energy evolution until
this instant is somewhat different for the various cases and no clear trend can be
distinguished apart from the initial transient growth. When evaluating the disturbance
energy at t = 30, 40 and 50, the maximum moves out from the considered scales
towards longer and narrower initial disturbances. However, these narrow localized
disturbances do not lead to transition despite their large initial amplitude.

Breuer & Haritonidis (1990) compared the numerical results for a weak localized
disturbance with experiments, where the disturbance was caused by the impulsive
motion of a membrane at the wall and received good qualitative agreement of the
initial evolution. Henningson et al. (1993) investigated the effects caused by turning
the localized disturbance in an angle around the y-axis and found that a non-zero
angle gives rise to larger initial growth. In a preliminary study to the present work,
it was found that a disturbance with a 20◦ angle to the free-stream direction results
in lower threshold amplitudes. However, in the present study, we focus on localized
disturbances aligned with the free-stream direction and that can be experimentally
reproduced with the down–up motion of a membrane at the wall.

3. Results
3.1. Transition thresholds for a localized disturbance

In this section, the threshold amplitudes for transition from a localized disturbance to
a turbulent spot are investigated in several direct numerical simulations. If the initial
amplitude of the disturbance exceeds a certain threshold value, AT , transition occurs.
Previous investigations have mainly been concerned with determining the negative
exponent γ , relating to the initial amplitude of the primary disturbance as AT ∝ Reγ .
Trefethen et al. (1993) used simple models to feed transient growth by nonlinearities
and conjectured that for the Navier–Stokes equations, γ must be � −1. Baggett &
Trefethen (1997) reviewed several mathematical models of transition in parallel shear
flows collected from different research groups, and found the exponents −3 � γ � −1
depending on model and base flow. However, they conclude that for actual flows in
pipes (e.g. Hof, Juel & Mullin 2003) and channels, the range is more likely to be
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Re A E0 Lx × Ly × Lz Nx × Ny × Nz Transition

367 0.1 8.92 200 × 30 × 64 400 × 201 × 256 No
368 0.1 8.92 200 × 30 × 64 400 × 201 × 256 Yes
500 0.044 1.76 300 × 19 × 60 600 × 129 × 240 No
500 0.045 1.81 300 × 19 × 60 600 × 129 × 240 Yes
800 0.021 0.394 300 × 15 × 40 960 × 161 × 256 No
800 0.0215 0.413 300 × 15 × 40 960 × 161 × 256 Yes

1200 0.0123 0.135 300 × 10 × 40 1440 × 161 × 384 No
1200 0.0124 0.136 300 × 10 × 40 1440 × 161 × 384 Yes

Table 2. Flow and box parameters for threshold simulations.

−2 � γ < −1. Most investigations dealing with this relationship focus on plane
channel flows (Kreiss, Lundbladh & Henningson 1994; Lundbladh, Henningson &
Reddy 1994; Dauchot & Daviaud 1995; Reddy et al. 1998). However, Levin et al.
(2005) investigated transition thresholds for periodic disturbances in the ASBL at the
same Reynolds numbers as considered in the present work.

There has been little work on growing boundary layers, mainly because of the
difficulties of defining such a relationship, as the local Reynolds number changes with
the boundary-layer thickness. However, tools for transition prediction in boundary
layers have been developed for half a century. Andersson, Berggren & Henningson
(1999) proposed a relation for bypass transition prediction in the Blasius boundary
layer where the level of free-stream turbulence that leads to transition scales as
Re−1. A good correlation to this result was obtained experimentally by Fransson,
Matsubara & Alfredsson (2005).

For a parallel boundary layer such as the ASBL, where the Reynolds number
based on the boundary-layer thickness is constant along the streamwise direction, the
procedure to find the threshold amplitude is straightforward. Simulations are carried
out with a number of different initial amplitudes of the localized disturbance at the
Reynolds numbers 500, 800 and 1200. The parameters for the simulations closest to
the threshold amplitudes are summarized in table 2.

When evaluating whether transition occurs or not, the disturbance energy, extreme
values of velocity and vorticity components and visual examinations of the flow field
are taken into account. Figure 2 shows the evolution of disturbance energy (figure 2a),
minimum and maximum wall-normal disturbance velocity (figure 2b) and maximum
streamwise vorticity (figure 2c) for three initial amplitudes close to the threshold value
at Re = 500. In this case, transition occurs for the amplitudes A = 0.045 and 0.046,
but not for 0.044 for which the disturbance energy and flow extreme values decay
after the initial transient growth.

The circles in figure 3 summarize the amplitude thresholds for the localized
disturbances (LD) for the three Reynolds numbers. The thresholds are taken as
the lowest amplitudes of the initial wall-normal disturbance velocity for which
transition is attained in the DNS before the time t = 1000. The curves are least-
squares fits of AT ∝ Reγ to the data and for this range of Reynolds numbers, the
threshold amplitude is found to scale as Re−1.5. This can be compared to the threshold
exponents of γ = −1.3 and −1.05 for oblique waves (OW) and streamwise vortices
(SV), respectively. The data from Levin et al. (2005) is represented by squares in
figure 3.
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Figure 2. Evolution of disturbance energy (a), minimum and maximum wall-normal
disturbance velocity (b) and maximum streamwise vorticity (c) at Re = 500 and A = 0.046
(solid line), 0.045 (dashed line) and 0.044 (dotted line).

In this investigation, only one type of localized disturbance is introduced in the
flow, thus the obtained amplitude thresholds must be considered as an upper bound,
since more optimal disturbance configurations that would lead to transition for lower
initial amplitudes may exist. Furthermore, no conclusions of the asymptotic behaviour
(Re → ∞) can be drawn. In fact, Chapman (2002) used an asymptotic analysis of
the Navier–Stokes equations to study threshold exponents for transition in plane
Couette flow and plane Poiseuille flow and found discrepancies to available results
from numerical simulations. He explains this difference by the fact that the asymptotic
values are only reached for very large Reynolds numbers, of order 106, where the
scaling laws of the transient growth are different than for the Reynolds numbers used
in the numerical simulations. However, the present results give a good indication of
the thresholds for relevant Reynolds numbers in real applications (see e.g. Schrauf
2004).

An attempt at finding the critical Reynolds number for transition initiated by
the localized disturbance is also carried out. Simulations are performed with an
initial amplitude of the localized disturbance of 0.1 and various Reynolds numbers,
(table 2). This amplitude is considered to be sufficiently large to represent the search
for a critical Reynolds number after evaluation of simulations with larger amplitudes.
Relaxation of the localized disturbance appears for Re = 367 or below. This value
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Figure 3. Threshold amplitude as a function of Reynolds number. The circles correspond to
the lowest amplitudes of the localized disturbances (LD) from the DNS that lead to transition.
Numerical data from Levin et al. (2005) for streamwise vortices (SV) and oblique waves (OW)
are represented by the squares. The black lines are the least-squares fits to the data and the
grey line indicates the critical Reynolds number of 367.
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Figure 4. Energy spectra in Fourier space of a localized disturbance with A = 0.06 at
Re = 500. (a) t = 0, (b) 40, (c) 80 and (d) 120. The energy is averaged in the wall-normal
direction and the contours are equidistant with the same increment in all figures.

is indicated in figure 3 as the thick grey line and should also be considered as
an upper bound. This critical Reynolds number says nothing about whether the
turbulence is sustained or not. However, Mariani et al. (1993) performed DNS of the
asymptotic suction turbulent boundary layer and reported sustained turbulence for a
corresponding Reynolds number as low as 278.

3.2. Breakdown to a turbulent spot

In this section, the breakdown mechanism of a localized disturbance is discussed and
visualized. In figure 4, the energy spectra of the localized disturbance at four time
instants are displayed in Fourier space where α and β denote the wavenumbers in the
streamwise and spanwise directions, respectively. The initial disturbance (figure 4a)
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Figure 5. Visualizations of vortical structures (λ2 = −0.002) and wall-shear stress (with dark
regions displaying high shear) for the breakdown of a localized disturbance with A = 0.06 at
Re = 500. (a) t = 80, (b) 140, (c) 200 and (d) 300. The scales in all figures are equidistant and
the width is 40.

is centred around a pair of oblique waves (the negative part is not showed). As time
proceeds (figure 4b–d), a β-cascade (Henningson et al. 1993) takes place, where energy
is transferred to higher wavenumbers along the β-axis. The mechanism behind this
β-cascade is the nonlinear interaction between the modes present in the disturbance
and can be understood by looking at the convolution sums in Fourier space.

The turbulent spot is an assemblage of many small-scale streaky structures and
hairpin vortices (Perry et al. 1981; Sankaran et al. 1988; Singer & Joslin 1994;
Schröder & Kompenhans 2004). These hairpin vortices evolve at the trailing edge
of the young spot and increase the region of turbulence in the streamwise and
spanwise directions as the spot grows. The spot appears to grow through the birth of
new structures rather than the growth or spreading of the substructures themselves.
Vortical structures can be identified in the flow by plotting regions where the second
largest eigenvalue λ2 of the Hessian of the pressure assumes negative values (Jeong
et al. 1997). Figure 5 shows a sequence of the early development of the localized
disturbance with A = 0.06 at Re = 500. The initial disturbance develops into a
hairpin vortex aligned with the streamwise direction, see figure 5(a) which shows the
instant at t = 80. Its legs are close to the wall at the trailing edge of the disturbance
while the head is located higher up and further downstream. Between the legs, an
upward motion is present. On each side of the head, counter-rotating structures
can be seen. Figure 5(b) shows the instant at t = 140, the head is detached as a
result of vortex stretching and a new head is formed in its place. At the same time,
spiral vortices appear at the counter-rotating structures on each side. An instability
is developing on the stretched legs of the hairpin vortex that breaks up into several
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Re A Lx × Ly × Lz Nx × Ny × Nz Number of points End time

500 0.06 400 × 25 × 100 800 × 181 × 400 57.9 million 1200
800 0.03 400 × 12 × 80 1280 × 129 × 512 84.5 million 950

1200 0.02 300 × 10 × 80 1440 × 161 × 768 178 million 800

Table 3. Flow and box parameters for simulations of turbulent spots.

individual hairpin vortices and at t = 200, six hairpin heads can be distinguished
along the centreline in figure 5(c). At t = 300, the flow pattern has become complex
with many hairpin and spiral vortices characterizing a young turbulent spot.

3.3. Development of turbulent spots

In this section, turbulent spots are visualized and the spreading angles and propagation
velocities of the leading and trailing edges are evaluated. Table 3 summarizes the
parameters for the three simulations performed. Apart from the localized disturbance,
random noise is added to the initial velocity field in order to break up symmetries.
The level of the noise is prescribed with its energy density, which has the value 10−7

for all three simulations.

3.3.1. Overall features

As the spot propagates downstream, it grows in size. However, the wall-normal
spreading is very small. Figure 6 shows the turbulent spots at t = 800. The streamwise
disturbance velocity is visualized with dark and light regions displaying high and low
values, respectively. The spot for the Reynolds number 500 is shown in figures 6(a)
and 6(b) where the wall-parallel plane at y = 1 is shown in figure 6(a) and the
(x, y)-plane along the centreline (z = 0) is shown in figure 6(b). Figures 6(c) and 6(d)
show a corresponding visualization of the turbulent spot for Reynolds number 800.
In figures 6(e) and 6(f ), the turbulent spot for Reynolds number 1200 is shown. For
all visualizations, the length of the planes is 300 while the width and height show the
entire spanwise and wall-normal extent of the computational box, respectively. From
the visualizations, it can be interpreted that the turbulent spot takes a bullet-shaped
form with a rounded leading edge and a straight trailing edge. This shape becomes
more distinct for higher Reynolds numbers as the scales within the spot become
smaller. The interior of the spot is occupied by turbulent streaky structures. The
side views reveal that the leading edge develops an overhang over the laminar flow
and this is typical for turbulent spots in boundary layers. Beneath this overhang,
long streaks extend from the turbulent region close to the wall. These streaks evolve
from the influence of the disturbed flow in the overhang region. Behind the trailing
edge of the spot, shorter streaks persist and they evolve from the relaminarization of
turbulent structures propagating at a slower rate than the trailing edge itself.

In the laminar flow surrounding the spot, a large-scale flow is induced. In the wake
of the spot, the flow is accelerated close to the wall, resulting in a calm region similar
to that seen behind turbulent spots in boundary layers without wall suction. The flow
on the sides of the widest part of the spot, is also weakly accelerated, while the flow on
the sides behind that region and beside the wake is weakly decelerated. As expected
for such a stable base flow, no evidence of waves surrounding the spot can be seen.
The deviation of the laminar flow induced by the large-scale flow surrounding the spot
typically decays exponentially with the distance from the spot (see e.g. Schumacher &
Eckhardt 2001). In order to study the laminar exterior on the sides of the turbulent
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Figure 6. Visualizations of turbulent spots at t = 800. Dark and light regions show high and
low streamwise disturbance velocity, respectively. Flow is from left to right and the length of
the planes is 300. (a, c, e) Wall-parallel plane at y = 1. (b, d, f ) (x, y)-plane through the centre
line of the spots (z = 0). (a, b) Re = 500. (c, d) Re = 800. (e, f ) Re = 1200.

spot at Re = 500, an additional simulation was performed with a box of length
and width 200. Figure 7 shows the disturbance energy, averaged in the wall-normal
direction, along the spanwise direction originating from the centre of the turbulent
spot at t = 400. The expected exponential decay of the flow distortion can be seen.
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Figure 7. Disturbance energy along the spanwise direction originating from the centre of a
turbulent spot at Re = 500 and t = 400. The energy is averaged in the wall-normal direction.

3.3.2. Spreading characteristics

In order to evaluate the spreading rate of the turbulent spot in the wall-parallel
plane at y = 1, the streamwise derivative of the streamwise velocity provides a well-
defined measure. The region of turbulence is represented by the criteria ∂u/∂x � 0.05,
which agrees well with other similar conditions as well as visual examinations of
the wall-parallel planes in figures 6. This condition is chosen because it is easy to
measure in an experiment and it filters away the laminar streaks. For the evaluation
of the spreading rates, the initial evolution of the spots is disregarded. In agreement
with spots in other flows, the length and the width of the turbulent spots assume a
linear growth. A closer look at the propagation of the leading and trailing edges for
Re = 500 reveals that the individual structures, in the considered plane, propagate in
a slower rate than the leading and trailing edges themselves. New turbulent structures
are born in the laminar streaks preceding the turbulent region and at the trailing
edge, structures move out of the spot and undergo relaminarization. The data from
the lateral spreading are more scattered since the widest part of the spots move back
and forth somewhat as new structures are born. It should also be mentioned that the
spreading differs on the two sides owing to the randomness introduced by the initial
noise.

The main characteristics of the spreading of the three simulated spots are
summarized in figure 8. As can be seen in figure 8(a), the velocity of the leading edge
increases slightly with increased Reynolds number, but seems to level off at a value of
0.9 for high Reynolds numbers and this value is in agreement with the turbulent spot in
the flat-plate boundary layer. The trailing-edge velocity, on the other hand, decreases
almost linearly with increasing Reynolds number for the considered Reynolds num-
bers. The half-width angle, which is taken as the mean value from both sides, increases
with increasing Reynolds number (figure 8b). In this figure, the cross indicates the
reasonable assumption of a zero spreading angle at the critical Reynolds number.

As the spot grows linearly in length and width, and the wall-normal growth
is negligible in comparison, it is reasonable to expect a quadratic growth of the
disturbance energy in the fully developed turbulent spot. To assess whether this is true
or not, the square root of the disturbance energy is plotted versus time in figure 9(a).
Linear fits to the data are represented by the grey lines and confirm the assumption
of a quadratic growth of the disturbance energy. The agreement becomes better for
higher Reynolds numbers. An explanation for this is that the turbulent structures
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Figure 8. Spreading of turbulent spots versus Reynolds number. (a) Propagation velocities,
ule and ute , of the leading and trailing edges, respectively. (b) Mean half-width angle α. The
cross indicates the critical Reynolds number.
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Figure 9. Evolution of the disturbance energy within turbulent spots. (a) Square root of the
energy versus time for Re = 500 (—), 800 (− − −) and 1200 (− · −). Grey lines are linear fits
to the data within the plotted intervals. (b) Slopes of the fitted lines versus Reynolds number.
The cross indicates the critical Reynolds number.

within the spot are larger for lower Reynolds numbers, and hence, the evolution
of the energy is more affected by the growth or decay of individual structures. In
figure 9(b), the slopes of the fitted lines are plotted versus Reynolds number. If we
assume a linear increase of the slope with increasing Reynolds number for Re � 800
(dashed line), the Reynolds number for a zero growth of the disturbance energy falls
very close to the critical Reynolds number found in § 3.1. This might provide an
additional approach for finding an approximation of the critical Reynolds number
for the onset of a turbulent spot.

4. Summary and conclusion
A study of the development of localized disturbances and turbulent spots in the

asymptotic suction boundary layer are carried out using direct numerical simulations.
The localized disturbance is superposed to the initial velocity field in the form of
two counter-rotating vortex pairs. This type of initial disturbance can be reproduced
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experimentally with the down–up motion of a membrane located at the wall (Breuer &
Haritonidis 1990). A parametric study of the horizontal scales of the initial disturbance
is performed. It is found that keeping the initial disturbance energy constant rather
than the initial disturbance amplitude is appropriate when comparing the growth
of disturbances with different scales. The disturbance scales that lead to the highest
growth under the conditions investigated are used in the simulations.

The threshold amplitude for breakdown of the localized disturbance into a turbulent
spot is investigated for the Reynolds numbers Re = 500, 800 and 1200, based on the
free-stream velocity and the displacement thickness. It is found that the threshold
amplitude, defined as the maximum wall-normal velocity of the initial disturbance,
scales as Re−1.5 for the considered Reynolds numbers. This can be compared to the
numerical results of Levin et al. (2005), who found that the threshold amplitude scales
as Re−1.3 for oblique transition and as Re−1.05 for transition initiated by streamwise
vortices and random noise. Furthermore, a search for the critical Reynolds number for
breakdown of the localized disturbance is carried out. It is found that for Re � 367,
the localized disturbance decays after the initial transient growth.

The vortical structures within the early breakdown mechanism of the localized
disturbance are studied for Re = 500. The initial disturbance develops into a hairpin
vortex aligned with the streamwise direction. Its legs are close to the wall at the trailing
edge of the disturbance while the head is located higher up and further downstream.
This head is detached as a result of vortex stretching and a new head is formed in
its place. An instability that develops on the original hairpin vortex further feeds this
process, resulting in a row of hairpin vortex heads. In a previous numerical study
(Singer & Joslin 1994), the same behaviour was found in the flat-plate boundary
layer. The young turbulent spot consists of many hairpin and spiral vortices that
increase the size of the spot through the addition of new structures.

The shape and spreading rate of the turbulent spot are determined for Re = 500,
800 and 1200. Flow visualizations reveal that the turbulent spot takes a bullet-shaped
form with a rounded leading edge and a straight trailing edge. This shape becomes
more distinct for higher Reynolds numbers as the scales within the spot diminish.
The leading edge develops an overhang over the laminar flow. Beneath this overhang,
long streaks extend from the turbulent region close to the wall and the breakdown
of these streaks is responsible for the streamwise growth of the spot. Behind the
trailing edge of the spot, shorter streaks persist and evolve from turbulent structures
that move in a slower rate than the trailing edge itself. The spot is followed by
a calm wake with accelerated flow. No evidence of waves surrounding the spot
exists.

The fully developed turbulent spot is found to grow linearly both in length and
width while the wall-normal spreading is very small. As a result, the disturbance
energy within the spot assumes a quadratic growth, which becomes more legible
for higher Reynolds numbers. The leading edge is found to propagate at about
85–90 % of the free-stream velocity while the trailing-edge velocity decreases with
increasing Reynolds number. The half-width angle is found to increase with increasing
Reynolds number. However, the spreading rates of the turbulent spot have to level
off to constant values at higher Reynolds numbers.

To summarize, the turbulent spot in the asymptotic suction boundary layer bears
many similarities to spots in other flows. Its shape and spreading rates are reminiscent
of the turbulent spot in boundary layers subjected to a favourable pressure gradient.
In common with spots in plane Couette flow and plane Poiseuille flow, the spreading
rates are dependent on the Reynolds number.



412 O. Levin and D. S. Henningson

This work was funded by the Swedish Energy Agency (Energimyndigheten). The
direct numerical simulations were performed at the Center for Parallel Computers at
KTH.

REFERENCES

Alavyoon, F., Henningson, D. S. & Alfredsson, P. H. 1986 Turbulent spots in plane Poiseuille
flow–flow visualization. Phys. Fluids 29, 1328–1331.

Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass
transition in boundary layers. Phys. Fluids 11, 134–150.

Baggett, J. S. & Trefethen, L. N. 1997 Low-dimensional models of subcritical transition to
turbulence. Phys. Fluids 9, 1043–1053.

Balakumar, P. & Hall, P. 1999 Optimum suction distribution for transition control. Theoret.
Comput. Fluid Dyn. 13, 1–19.

Bech, K. H., Henningson, D. S. & Henkes, R. A. W. M. 1998 Linear and nonlinear development
of localized disturbances in zero and adverse pressure gradient boundary-layers. Phys. Fluids
10, 1405–1418.

Breuer, K. S. & Haritonidis, J. H. 1990 The evolution of a localized disturbance in a laminar
boundary layer. Part 1. Weak disturbances. J. Fluid Mech. 220, 569–594.

Breuer, K. S. & Landahl, M. T. 1990 The evolution of a localized disturbance in a laminar
boundary layer. Part 2. Strong disturbances. J. Fluid Mech. 220, 595–621.

Byström, M. G., Levin, O. & Henningson, D. S. 2007 Optimal disturbances in suction boundary
layers. Eur. J. Mech. B/Fluids 26, 330–343.

Cantwell, B., Coles, D. & Dimotakis, P. 1978 Structure and entrainment in the plane of symmetry
of a turbulent spot. J. Fluid Mech. 87, 641–672.

Carlson, D. R., Widnall, S. E. & Peeters, M. F. 1982 A flow-visualization of transition in plane
Poiseuille flow. J. Fluid Mech. 121, 487–505.

Chapman, S. J. 2002 Subcritical transition in channel flows. J. Fluid Mech. 451, 35–97.

Dauchot, O. & Daviaud, F. 1995 Finite amplitude perturbation and spots growth mechanism in
plane Couette flow. Phys. Fluids 7, 335–343.

Elder, J. W. 1960 An experimental investigation of turbulent spots and breakdown to turbulence.
J. Fluid Mech. 9, 235–246.

Emmons, H. W. 1951 The laminar–turbulent transition in a boundary layer. Part I. J. Aero. Sci. 18,
490–498.

Fransson, J. H. M. & Alfredsson, P. H. 2003 On the disturbance growth in an asymptotic suction
boundary layer. J. Fluid Mech. 482, 51–90.

Fransson, J. H. M. & Corbett, P. 2003 Optimal linear growth in the asymptotic suction boundary
layer. Eur. J. Mech. B/Fluids 22, 259–270.

Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition induced by free-stream
turbulence. J. Fluid Mech. 527, 1–25.

Griffith, A. A. & Meredith, F. W. 1936 The possible improvement in aircraft performance due to
boundary layer suction. Tech. Rep. 2315. Rep. Aero. Res. Coun.

Henningson, D. S. & Alfredsson, P. H. 1987 The wave structure of turbulent spots in plane
Poiseuille flow. J. Fluid Mech. 178, 405–421.

Henningson, D. S. & Kim, J. 1991 On turbulent spots in plane Poiseuille flow. J. Fluid Mech. 228,
183–205.

Henningson, D. S., Spalart, P. & Kim, J. 1987 Numerical simulations of turbulent spots in plane
Poiseuille and boundary-layer flow. Phys. Fluids 30, 2914–2917.

Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for bypass transition
from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250, 169–238.

Hocking, L. M. 1975 Non-linear instability of the asymptotic suction velocity profile. Q. J. Mech.
Appl. Maths 28, 341–353.

Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys.
Rev. Lett. 91, 244502.

Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent
channel flow. J. Fluid Mech. 332, 185–214.



Turbulent spots in the asymptotic suction boundary layer 413

Joslin, R. D. 1998 Aircraft laminar flow control. Annu. Rev. Fluid Mech. 30, 1–29.

Katz, Y., Seifert, A. & Wygnanski, I. 1990 On the evolution of the turbulent spot in a laminar
boundary layer with a favourable pressure gradient. J. Fluid Mech. 221, 1–22.

Kreiss, G., Lundbladh, A. & Henningson, D. S. 1994 Bounds for threshold amplitudes in
subcritical shear flows. J. Fluid Mech. 270, 175–198.

Levin, O., Davidsson, E. N. & Henningson, D. S. 2005 Transition thresholds in the asymptotic
suction boundary layer. Phys. Fluids 17, 114104.

Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane Couette
flow. J. Fluid Mech. 229, 499–516.

Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J., Kim, J. & Henningson, D. S. 1999
An efficient spectral method for simulation of incompressible flow over a flat plate. Tech. Rep.
KTH, Department of Mechanics, Stockholm.

Lundbladh, A., Henningson, D. S. & Reddy, S. C. 1994 Threshold amplitudes for transition in
channel flows. In Transition, Turbulence, and Combustion (ed. M. Y. Hussaini, T. B. Gatski &
T. L. Jackson), vol. 1, pp. 309–318. Kluwer.

Mariani, P., Spalart, P. & Kollmann, W. 1993 Direct simulation of a turbulent boundary layer
with suction. In Near-Wall Turbulent Flows (ed. R. M. C. So, C. G. Speziale & B. E. Launder),
pp. 347–356. Elsevier.

Mathew, J. & Das, A. 2000 Direct numerical simulations of spots. Current Sci. 79, 816–820.

Nordström, J., Nordin, N. & Henningson, D. S. 1999 The fringe region technique and the Fourier
method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J.
Sci. Comput. 20, 1365–1393.

Perry, A. E., Lim, T. T. & Teh, E. W. 1981 A visual study of turbulent spots. J. Fluid Mech. 104,
387–405.

Pralits, J. O., Hanifi, A. & Henningson, D. S. 2002 Adjoint-based optimization of steady suction
for disturbance control in incompressible flows. J. Fluid Mech. 467, 129–161.

Reddy, S. C., Schmid, P. J., Baggett, J. S. & Henningson, D. S. 1998 On stability of streamwise
streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269–303.

Riley, J. J. & Gad-el-Hak, M. 1985 The dynamics of turbulent spots. In Frontiers in Fluid Mechanics
(ed. S. H. Davis & J. L. Lumley), pp. 123–155. Springer.

Sankaran, R., Sokolov, M. & Antonia, R. A. 1988 Substructures in a turbulent spot. J. Fluid
Mech. 197, 389–414.

Schrauf, G. 2004 Large-scale laminar-flow tests evaluated with linear stability theory. J. Aircraft
41, 224–230.
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